Bulge-driven and Radiation-regulated Growth of Seed Black Holes

KwangHo Park

Massimo Ricotti (UMD), Priyamvada Natarajan (Yale), Tamara Bogdanović (GT), John Wise (GT)

JSI Workshop
Oct 12, 2015

TCAN (Theoretical and Computational Astrophysics Network) Collaboration
Observation

Quasars at high-z
BH mass $\sim 10^8 - 10^9 \, M_{\odot}$

Fan+ 01,03
Willot+ 03,10
Mortlock +11
Wu+ 15
• **Seed BH mass**
 – 10^2- $10^5 \, M_\odot$

• **Formation scenarios**
 – Pop III remnant
 – Direct collapse
 – Stellar collapses

• **Accreting at Eddington rate**

Volonteri 12
Natarajan 11
How do we estimate an accretion rate onto a BH?

Bondi Accretion (1952)

Eddington-limited Bondi-Hoyle rate
Radiative Feedback by Black Hole

H II region
(Hot & Ionized)
\(\eta = 0.1, \ M_{bh} = 100 \ M_{\text{sun}}, \ T_{\text{inf}} = 10^4 \ K, \ n_H = 10^6 \ cm^{-3}\)
Accretion regimes

Mode I, *Mode II*, super-Eddington

- Different accretion regimes as a function of BH mass & Gas density are main parameters
 - **Mode I**: ~1 percent of Bondi rate, 5-6 orders of difference between max/min accretion rates
 - **Mode II**: Eddington-limited, 1-2 orders of mag difference between max/min accretion rates.
 - **super-Eddington**: at high M_{BH} and n_H

- Low accretion rate: only ~1 percent of Bondi rate
- Only the gravitational potential of a BH was considered....

Park & Ricotti (2012)
Bulge can boost accretion?

- Accretion Radius
- Strömgren Radius
- Effective Bondi Radius
 - Due to bulge comp
Effective Bondi radius
increased Bondi radius due to bulge

\[|\Phi| = \frac{GM(<r)}{r} \text{ (km}^2\text{s}^{-2}) \]

\[\frac{GM_{BH}}{r_{B,eff}} \equiv c_\infty \]

- Bulge: Hernquist (1990) profile
- Gas temperature
- BH Mass
Effective Bondi Radius as a function of bulge-to-BH mass ratio

\[\delta_{\text{bulge-BH}} = \frac{M_{\text{bulge}}}{M_{\text{BH}}} \]

\[\delta_{\text{crit}} \sim \frac{10^6 M_\odot}{M_{\text{BH}}} \left(\frac{T_\infty}{10^4 \text{ K}} \right)^{3/2} \]

Park et al. (2015) to be submitted
Simulations w/o Radiative Feedback

- $T=10^6$ K
- $M_{BH} = 10^6 M_\odot$

- Accretion rate makes a transition at $\delta_{\text{bulge-BH}} \sim 10^3$

Park et al. (2015) to be submitted
Simulations w/o Radiative Feedback
Accretion rates

\[\delta_{\text{crit}} \sim \frac{10^6 M_\odot}{M_{\text{BH}}} \left(\frac{T_\infty}{10^4 \text{K}} \right)^{3/2} \]

\[\dot{M}_{\text{BH}} = \dot{M}_B \left(\frac{r_{B,\text{eff}}}{r_B} \right)^\beta \]

\[\beta \sim 1 \]

Park et al. (2015) to be submitted
Accretion rate as a function of bulge-to-BH ratio with radiative feedback

Park et al. (2015) to be submitted
Simulations with radiative feedback

\[\delta_{\text{crit}} \sim \frac{10^6 M_\odot}{M_{\text{BH}}} \left(\frac{T_\infty}{10^4 \text{ K}} \right)^{3/2} \]

- \(\delta_{\text{crit}} \): same with non-radiative simulations
- Accretion rate is suppressed by 2 orders of mag
The radial velocity profiles show a more distinct changes as a function of radius for M6N1 with different bulge-to-BH mass ratios. However, with the various bulge components (first columns). However, the simulations are consistent with our model.

The radial velocity increases as approximately effective accretion radius when the Str¨omgren sphere, which leads the accretion to grow by this timescale describes how fast BHs grow by timescale for $\tau_x \equiv \frac{10^{-x} M_{\text{bulge}}}{(1 - \eta) \dot{M}_{\text{BH}}}$. The mean accretion rates do not change as a function of BH mass as τ_1 is not sensitive to $10^2 M_\odot$, the accretion rate remains the same since $10^6 M_\odot$, and the mean accretion rates do change as a function of the bulge mass. The bottom panel of Figure 7 shows the time-averaged density (top), temperature (middle), and radial velocity (bottom) profiles as a function of radius for $M_{\text{BH}} = 10^6 M_\odot$, the accretion behavior displays a distinct difference. The density inside $\bar{r}_{\text{crit}} = 10^5$ is found (shown as a solid line) as the non-radiative accretion onto a heavy seed produces $\tau_2 \equiv 10^{-x} \frac{M_{\text{bulge}}}{(1 - \eta) \dot{M}_{\text{BH}}}$. The density inside $\bar{r}_{\text{crit}} = 10^3$ is comparable to the mean size of the Str¨omgren sphere. However, the outflow weakens with increasing $\bar{r}_{\text{crit}} = 10^4$...
Transition of Accretion Regimes

\[\dot{M}_{\text{BH}} = \dot{M}_B \left(\frac{r_{\text{B,eff}}}{r_B} \right)^\beta \]

Park et al. (2015) to be submitted
Summary

• **Bulge-driven accretion**
 – the massive bulge increase $r_{B,\text{eff}}$, but only when $\delta_{\text{bulge-BH}} > \delta_{\text{crit}}$.
 – A minimum bulge mass?
 • $\sim 10^6 M_\odot$

\[
\delta_{\text{crit}} \sim \frac{10^6 M_\odot}{M_{\text{BH}}} \left(\frac{T_\infty}{10^4 \text{ K}} \right)^{3/2}
\]

\[
\dot{M}_{\text{BH}} = \dot{M}_B \left(\frac{r_{B,\text{eff}}}{r_B} \right)^\beta
\]

• **Radiation-regulated accretion**
 – Light seed ($\sim 100 M_\odot$) : $\delta_{\text{crit}} \sim 10^4$
 • hard to grow
 – Heavy seeds ($> 10^5 M_\odot$) : $\delta_{\text{crit}} \sim 1$
 • likely to grow coevally with bulge
Summary

Light seeds (< $10^2 \, M_{\text{Sun}}$)

Heavy seeds (> $10^5 \, M_{\text{Sun}}$)

Bulge-driven growth

M_{BH}-sigma?